Detuning by tilting - Coronado's T-max tuner |
The Sun provides so much radiation that a tiny wavelength interval can be selected to enable viewing of certain layers of the solar atmosphere or certain elements – and still have plenty of light for fast exposures that freeze the seeing. Most notable is the hydrogen alpha (H-α) transition at a wavelength of 6562.8Å. Emission at this wavelength is a sign that hydrogen is being ionized and it comes predominately from the solar chromosphere. Narrowband solar filters can be detuned slightly to maximize contrast or to allow observation of Doppler shifted light from features that are moving rapidly along our line of sight. The tuning range is typically very limited – around one angstrom – but even such small changes lead to dramatic differences in the resulting image. I use a Coronado SM60 H-α filter that can be tilted slightly using the so-called T-max tuner; see the photo above.
Rates of change in brightness of various features with filter detuning and how they relate to colors in a tri-band image (click for bigger version) |
As the wavelength is tuned away from the H-α transition we are viewing more and more light from the underlying photosphere. What is especially interesting in this regard is that the rate of change in brightness with wavelength is different for various features, depending on what they are. It is not the same everywhere. Hence, if detuned images are used as separate color channels in a composite image various colors will appear that represent different rates of change. This is evident in the tri-band image above where the R, G, B channels are chosen as most detuned, medium detuned and not-detuned, respectively, from the H-α wavelength. In such a color scheme the underlying photosphere appears yellowish, spicules and filaments are reddish, plague is white, etc.
Tri-band image of AR1087 in a quite moment. This active region had a beta-gamma magnetic field and harbored multiple M-level flares during July 2010. Click to enlarge. |
No comments:
Post a Comment